Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(1): 100823, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029591

RESUMO

Bacterial two-component flavin-dependent monooxygenases cleave the stable C-S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS-) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C-S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS- closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD's functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Multimerização Proteica , Pseudomonas fluorescens/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Mononucleotídeo de Flavina/metabolismo , Mesilatos/metabolismo , Modelos Moleculares , Especificidade por Substrato , Enxofre/metabolismo
2.
Biochem Biophys Res Commun ; 522(1): 107-112, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31753487

RESUMO

Methyl sulfur compounds are a rich source of environmental sulfur for microorganisms, but their use requires redox systems. The bacterial sfn and msu operons contain two-component flavin-dependent monooxygenases for dimethylsulfone (DMSO2) assimilation: SfnG converts DMSO2 to methanesulfinate (MSI-), and MsuD converts methanesulfonate (MS-) to sulfite. However, the enzymatic oxidation of MSI- to MS- has not been demonstrated, and the function of the last enzyme of the msu operon (MsuC) is unresolved. We employed crystallographic and biochemical studies to identify the function of MsuC from Pseudomonas fluorescens. The crystal structure of MsuC adopts the acyl-CoA dehydrogenase fold with putative binding sites for flavin and MSI-, and functional assays of MsuC in the presence of its oxidoreductase MsuE, FMN, and NADH confirm the enzymatic generation of MS-. These studies reveal that MsuC converts MSI- to MS- in sulfite biosynthesis from DMSO2.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/enzimologia , Enxofre/química , Acil-CoA Desidrogenase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Dimetil Sulfóxido/química , Flavinas/química , Espectroscopia de Ressonância Magnética , Mesilatos/química , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Oxigênio/química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Sulfetos/química , Sulfonas/química , Tiofenos/química
3.
Arch Biochem Biophys ; 604: 159-66, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27392454

RESUMO

The biochemical pathway through which sulfur may be assimilated from dimethylsulfide (DMS) is proposed to proceed via oxidation of DMS to dimethylsulfoxide (DMSO) and subsequent conversion of DMSO to dimethylsulfone (DMSO2). Analogous chemical oxidation processes involving biogenic DMS in the atmosphere result in the deposition of DMSO2 into the terrestrial environment. Elucidating the enzymatic pathways that involve DMSO2 contribute to our understanding of the global sulfur cycle. Dimethylsulfone monooxygenase SfnG and flavin mononucleotide (FMN) reductase MsuE from the genome of the aerobic soil bacterium Pseudomonas fluorescens Pf0-1 were produced in Escherichia coli, purified, and biochemically characterized. The enzyme MsuE functions as a reduced nicotinamide adenine dinucleotide (NADH)-dependent FMN reductase with apparent steady state kinetic parameters of Km = 69 µM and kcat/Km = 9 min(-1) µM (-1) using NADH as the variable substrate, and Km = 8 µM and kcat/Km = 105 min(-1) µM (-1) using FMN as the variable substrate. The enzyme SfnG functions as a flavoprotein monooxygenase and converts DMSO2 to methanesulfinate in the presence of FMN, NADH, and MsuE, as evidenced by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The results suggest that methanesulfinate is a biochemical intermediate in sulfur assimilation.


Assuntos
Proteínas de Bactérias/química , Dimetil Sulfóxido/química , Oxigenases de Função Mista/química , Ácidos Sulfínicos/química , Sulfonas/química , Catálise , Escherichia coli/metabolismo , FMN Redutase/química , Mononucleotídeo de Flavina/metabolismo , Flavinas/química , Flavoproteínas/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Metano/química , NAD , Especificidade por Substrato , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...